курсовые работы Знание — сила. Библиотека научных работ. Коллекция рефератов
~ Коллекция рефератов, докладов, курсовых ~
 

МЕНЮ

курсовые работыГлавная
курсовые работыАрхитектура
курсовые работыАстрономия
курсовые работыБанковское биржевое дело и страхование
курсовые работыБезопасность жизнедеятельности
курсовые работыБиология и естествознание
курсовые работыБиржевое дело
курсовые работыБотаника и сельское хоз-во
курсовые работыВоенное дело
курсовые работыГенетика
курсовые работыГеография и экономическая география
курсовые работыГеология
курсовые работыГеология гидрология и геодезия
курсовые работыГосударственно-правовые
курсовые работыЗоология
курсовые работыИстория
курсовые работыИстория и исторические личности
курсовые работыКомпьютерные сети интернет
курсовые работыКулинария и продукты питания
курсовые работыМосквоведение краеведение
курсовые работыМузыка
курсовые работыПедагогика
курсовые работыПсихология
курсовые работыЭкономика туризма

курсовые работы

РЕКЛАМА


курсовые работы

ИНТЕРЕСНОЕ

курсовые работы

курсовые работы

 

Оборудование буровой установки

курсовые работы

Оборудование буровой установки

ТАЛЕВАЯ СИСТЕМА

НАЗНАЧЕНИЕ, СХЕМЫ И УСТРОЙСТВО

В процессе проводки скважины подъемная система выполня-ет различные операции. В одном случае она служит для про-ведения СПО с целью замены изношенного долота, спуска, подъема и удержания на весу бурильных колонн при отборе керна, ловильных или других работах в скважине, а также для спуска обсадных труб. В других случаях обеспечивает создание на крюке необходимого усилия для извлечения из скважины прихваченной бурильной колонны или при авариях с ней. Для обеспе-чения высокой эффективно-сти при этих разнообраз-ных работах подъемная си-стема имеет два вида ско-ростей подъемного крюка: техническую для СПО и технологические для ос-тальных операций.

В связи с изменением веса бурильной колонны при подъеме для обеспече-ния минимума затрат вре-мени подъемная система должна обладать способно-стью изменять скорости подъема в соответствии с нагрузкой. Она также слу-жит для удержания бу-рильной колонны, спущен-ной в скважину, в процессе бурения.

Подъемная система ус-тановки (рис. III.1) пред-ставляет собой полиспастный механизм, состоящий из кронблока 4, талевого (подвижного) блока 2, стального каната 3, яв-ляющегося гибкой связью между буровой лебедкой 6 и меха-низмом 7 крепления неподвижного конца каната. Кронблок 4 устанавливается на верхней площадке буровой вышки 5. Под-вижный конец А каната 3 крепится к барабану лебедки 6, а неподвижный конец Б -- через приспособление 7 к основанию вышки. К талевому блоку присоединяется крюк 1, на котором подвешивается на штропах элеватор для труб или вертлюг. В настоящее время талевый блок и подъемный крюк во многих случаях объединяют в один механизм -- крюкоблок.

ЭКСПЛУАТАЦИЯ ТАЛЕВЫХ СИСТЕМ

Подготовка талевого каната к оснастке:

Диаметр каната и число струн в оснастке выбирают с учетом максимально возможной нагрузки на крюке, при которой был бы двойной запас прочности, а при СПО -- тройной, наивыгоднейшим является четырех-пятикратный запас.

Канат необходимой прочности должен иметь диаметр, соот-ветствующий диаметру желоба шкивов талевого блока и кронблока.

Применять в талевых системах канаты с диаметром больше расчетного нельзя ввиду возможности его защемления в желобах шкивов и быстрого износа. Допускается применение канатов диа-метром меньше расчетного на 10%. Необходимый для оснастки канат подбирают по паспорту и проверяют соответствие марки-ровки на бочке барабана паспортным данным, осматривают ка-нат в соответствии с инструкцией и составляют акт приемки, о чем делают соответствующие записи в буровом журнале.

Фактический коэффициент запаса прочности каната проверя-ют путем сравнения агрегатной прочности каната, указанной в паспорте, с вероятной наибольшей нагрузкой на канат.

Для осмотра бочку с канатом устанавливают на козлы и вра-щают барабан по стрелке, указанной на бочке. При перемотке каната недопустимо образование петель и перекруток. Отрезают канат специальной канаторезкой. Перед тем, как отрезать канат, оба будущие его конца должны быть заделаны так, чтобы избе-жать их раскручивания. Концы заделывают плотной намоткой вязальной проволоки.

Новый канат следует хранить на барабане в помещении или под навесом, исключающим попадание влаги в барабан. Ржавые канаты или канаты, имеющие неплотности свивки прядей, по-рванные проволоки и другие дефекты к эксплуатации не допу-скаются.

Оснастка талевой системы:

По мере увеличения глубины скважин вес бурильных колонн, которые приходится спускать и поднимать, увеличивается, а мак-симальная скорость намотки ведущей струны талевого каната на барабан лебедки остается практически неизменной (около 20 м/с) для буровых установок разных классов. Поэтому для каждой установки применяют талевую систему со своей кратностью по-лиспаста от 4-х до 14. Это достигается применением различных оснасток 2X3; 3X4; ...; 7X8 (здесь первая цифра -- число шки-вов талевого блока, а вторая -- кронблока).

Под оснасткой талевой системы понимается навеска каната на шкивы кронблока и талевого блока в определенной последовательности, исключающей перекрещивание каната и трение его струн друг о друга. В настоящее время создано несколько типов оснастки. Перед тем как приступить к оснастке системы необхо-димо определить число шкивов в талевом блоке, тип каната, диа-метр и разрывное усилие каната. Диаметр каната должен соот-ветствовать размеру канавок шкивов талевого блока и кронбло-ка. При бурении глубоких скважин, когда глубина еще неболь-шая и бурильная колонна легкая, для ускорения СПО канатом оснащают не все шкивы системы, а только часть. В дальнейшем проводят переоснастку до полного использования всех шкивов. Однако переоснастка трудоемка и не всегда целесообразна.

Оснастку стремятся выполнить так, чтобы ведущая струна на-бегала на один из средних шкивов. В системах АСП струны ка-ната не должны мешать спуску талевого блока с находящейся в нем свечой. Неправильно выполненная оснастка может вызвать трение канатов или закручивание талевого блока, что может при-вести к аварии.

Существует два типа оснасток: параллельная, когда ось та-левого блока параллельна оси кронблока, и крестовая, когда оси талевого блока и кронблока перпендикулярны. Наиболее распро-странена крестовая оснастка (рис. III.14). Она имеет то преиму-щество, что исключает закручивание талевого блока и трение струн каната друг о друга.

Оснастку осуществляют следующим образом. Бухту каната устанавливают на металлическую ось приспособления, располо-женного под полом буровой, и соединяют конец талевого каната с концом пенькового вспомогательного каната. Затем раскрепля-ют барабан механизма крепления и наматывают на него четыре-пять витков пенькового каната, после чего этот канат после-довательно пропускают через шкивы 6 кронблока и V талевого блока, 1 кронблока и / талевого блока, затем 5--IV--2--//--4, как показано на рис. III.14.

Когда конец талевого каната со шкива 4 достигнет пола бу-ровой, отсоединяют пеньковый канат, а конец ведущей струны талевого каната укрепляют в зажимном приспособлении реборды барабана лебедки и наматывают на барабан лебедки восемь -- десять витков. Перед этим неподвижный конец талевого каната должен быть зажат в механизме крепления, после чего скрепля-ют его барабан с консольным рычагом и тарируют датчик и ин-дикатор веса инструмента.

БУРОВЫЕ ЛЕБЕДКИ

НАЗНАЧЕНИЕ, УСТРОЙСТВО И КОНСТРУКТИВНЫЕ СХЕМЫ

Лебедка -- основной механизм подъемной системы буровой установки. Она предназначена для проведения следующих опе-раций:

спуска и подъема бурильных и обсадных труб;

Удержания колонны труб на весу в процессе бурения или про-мывки скважины; приподъема бурильной колонны и труб при наращивании; передачи вращения ротору; свинчивания и развинчивания труб; вспомогательных работ по подтаскиванию в буровую инстру-мента, оборудования, труб и др.; подъема собранной вышки в вертикальное положение.

Буровая лебедка состоит из сварной рамы, на которой уста-новлены подъемный и трансмиссионный валы, коробка перемены передач (КПП), тормозная система, включающая основной (лен-точный) и вспомогательный (регулирующий) тормоза, пульт уп-равления. Все механизмы закрыты предохранительными щитами. Подъемный вал лебедки, получая вращение от КПП, преобра-зовывает вращательное движение силового привода в поступа-тельное движение талевого каната, подвижный конец которого закреплен на барабане подъемного вала. Нагруженный крюк под-нимается с затратой мощности, зависящей от веса поднимаемых труб, а спускается под действием собственного веса труб или та-левого блока, крюка и элеватора, когда элеватор опускается вниз за очередной свечой.

Лебедки снабжаются устройствами для подвода мощности при подъеме колонны и тормозными устройствами поглощения освобождающейся энергии при ее спуске. Для повышения к. п. д. во время подъема крюка с ненагруженным элеватором или ко-лонной переменного веса лебедки или их приводы выполняют многоскоростными. Переключение с высшей скорости на низшую и обратно осуществляется фрикционными оперативными муфта-ми, обеспечивающими плавное включение и минимальную затра-ту времени на эти операции. Во время подъема колонн различ-ного веса скорости в коробках передач переключают периоди-чески. Оперативного управления скоростями коробки не требу-ется.

В зависимости от скорости спуска или подъема крюка и числа струн в талевой оснастке канат на барабан лебедки навивается и свивается с различными скоростями. Скорость крюка при подъ-еме колонн большого веса во время технологических операций (расхаживание, ликвидация осложнения и аварий в скважине) составляет 0,15--0,25 м/с, а иногда и меньше. Эти скорости на-зываются технологическими, а скорости подъема бурильных ко-лонн и ненагруженного элеватора при СПО изменяются от 0,5 до 1,8 м/с и называются техническими. Более высокие скорости подъема ухудшают условия намотки каната на барабан и не дают существенного выигрыша во времени.

Скорости спуска колонн определяются их весом, длиной и тех-нологическими условиями скважины. Наибольшая скорость спус-ка бурильных колонн обычно не превышает 3 м/с, наименьшая при спуске обсадных колонн 0,2 м/с. В процессе бурения с по- мощью лебедки подается бурильная колонна со скоростью до 1,5 м/мин.

При подъеме колонны канат навивается на барабан лебедки под действием силы тяжести всей колонны, а свивается при спус-ке ненагруженного элеватора с небольшим натяжением. В про-цессе спуска колонн канат навивается при небольшом натяжении и большой скорости, а свивается под действием веса всей колон-ны. Это создает тяжелые условия работы каната, и он быстро изнашивается, особенно при многослойной навивке на барабан.

Мощность, передаваемая на лебедку, характеризует основные эксплуатационно-технические ее свойства и является классифи-кационным параметром.

Присоединительные размеры буровой лебедки: диаметр тале-вого каната; расстояние от середины барабана до центра звез-дочки, установленной на валу ротора. Диаметр каната должен соответствовать размерам канавок на наружной поверхности ба-рабана лебедки и размерам канавок шкивов талевой системы. В случае несоответствия канат будет быстро изнашиваться. На-рушение базового расстояния от середины барабана до центра роторной звездочки вызовет быстрый выход из строя цепи при-вода ротора и практически сделает невозможным нормальное бу-рение скважины роторным способом.

Современные отечественные буровые лебедки в основном вы-полняются по двум компоновочным схемам:

лебедка со всеми компонующими сборками монтируется на одной общей раме; эти лебедки имеют один главный вал, приво-димый в движение цепными трансмиссиями от коробки передач (ЛБ-750, ЛБУ-1100, ЛБУ-1700 и др.);

двух- и трехвальные лебедки, в которых собственно лебедка совмещена с КПП и представляет собой один агрегат (У2-2-11, У2-5-5идр.).

На рис. IV.1 показана одновальная лебедка ЛБ-750, смонти-рованная на общей раме / с вспомогательным тормозом 7 и стан-цией управления 8. Эта лебедка имеет главный вал с бараба-ном 5, цепные трансмиссии Зяб, главный тормоз 4 и тормозную рукоятку 2, которая служит для управления лебедкой с поста бурильщика.

На рис. IV.2 приведен подъемный агрегат, состоящий из двух блоков -- одновальной буровой лебедки ЛБУ-1100 4 и КПП 6,-- которые транспортируются отдельно, а при монтаже соединяют-ся в один агрегат. Цепные трансмиссии передач привода бара-банного вала лебедки от КПП «тихой» 5 и «быстрой» 7 скоро-стей закрыты кожухами. Они включаются оперативными пневма-тическими фрикционными муфтами с пульта управления 1, Расположенного на полу 2 буровой. Главным тормозом лебедки управляют удлиненной тягой 3 также с поста бурильщика.

Двух- и трехвальные лебедки в настоящее время почти не изготовляются, но на нефтепромыслах они еще применяются.

РОТОРЫ

НАЗНАЧЕНИЕ И УСТРОЙСТВО

Роторы предназначены для вращения вертикально подвешен-ной бурильной колонны с частотой 30--300 об/мин при роторном бурении или восприятия реактивного крутящего момента при бурении забойными двигателями. Они служат также для поддер-жания на весу колонн бурильных или обсадных труб, устанавли-ваемых на его столе на элеваторе или клиньях. Роторы также ис-пользуются при отвинчивании и свинчивании труб в процессе СПО, ловильных и аварийных работ. Ротор представляет собой как бы конический зубчатый редуктор, ведомое коническое коле-со которого насажено на втулку, соединенную со столом. Верти-кальная ось стола расположена по оси скважины.

На рис. V.1 показана схема ротора. Стол 5 имеет отверстие диаметром 250--1260 мм в зависимости от типоразмера ротора. В отверстие стола устанавливают вкладыши 7 и зажимы ведущей трубы 6, через которые передается крутящий момент. Большое коническое колесо 4 передает вращение столу ротора, укреплен-ному на основной 3 и вспомогательной 2 опорах, смонтированных в корпусе 1, образующем одновременно масляную ванну для смаз-ки передачи и подшипников.

Сверху стол защищен оградой 8. Быстроходный ведущий вал 10 расположен горизонтально на подшипниках 11, воспринимаю-щих радиальные и горизонтальные нагрузки. Вал 10 приводится: во вращение от цепной звездочки 12 или с помощью вилки кар-данного вала, расположенной на конце вала. Ротор снабжен сто-пором 9, при включении которого вращение стола становится не-возможным. Фиксация стола ротора необходима при СПО и бу-рении забойными двигателями для восприятия реактивного

момента.

Привод ротора в буровых установках с расположением ле-бедки на полу буровой осуществляется цепной трансмиссией от лебедки или от КПП карданной передачей, при установке лебед-ки ниже пола буровой -- дополнительной трансмиссией от лебед-ки или индивидуальным приводом от электродвигателя постоян-ного тока (рис. V.2), располагаемой под полом буровой. Такая конструкция обеспечивает свободное пространство для работы персонала буровой бригады.

КОНСТРУКЦИИ РОТОРОВ И ИХ ЭЛЕМЕНТОВ

Ротор Р-560 (рис. V.3) состоит из следующих основных сбо-рок и элементов. Станина 7-- основной элемент ротора. Обычно она представляет собой стальную отливку коробчатой формы, внутри которой смонтированы основные сборки и детали. Внут-ренняя полая часть станины -- масляная ванна для смазки кони-ческой зубчатой пары и подшипников опор стола ротора и при-водного вала.

Стол ротора 2 -- основная вращающаяся часть, приводящая во вращение через разъемные вкладыши 4 и зажимы 5 ведущую трубу и соединенную с ней спущенную в скважину бурильную колонну. Стол ротора монтируется на двух шаровых опорах -- главной 3 и вспомогательной 8. Главная опора 3 воспринимает динамические циклически действующие нагрузки -- радиальную от передаваемого крутящего момента и осевые от трения ведущей трубы о зажимы 5 ротора при подаче колонны и от веса стола ротора, а также статическую нагрузку от веса колонн труб и дру-гих элементов при установке их на стол ротора.

Вспомогательная опора 8 стола служит для восприятия ради-альных нагрузок от зубчатой передачи и осевых ударов при бу-рении или подъеме колонны. Периферийный зазор между стани-ной 7 и столом 2 ротора выполнен в виде лабиринта, предупре-ждающего проникновение бурового раствора и грязи внутрь ста-нины и выбрасывание смазки из ротора при вращении стола. Сверху стол ротора закрыт ограждением /, служащим для уста-новки на нем элеваторов и другого оборудования при СПО и за-щиты операторов.

Горизонтальный приводной вал 6 выполняется обычно в виде отдельной сборки, в которой вал с ведущей конической шестер-ней, насаженной на нем, монтируется на роликоподшипниках во втулке. Сдвоенный радиально-упорный подшипник, воспринимаю-щий радиальные и осевые нагрузки от зубчатой передачи, уста-навливается рядом с конической шестерней. Вторая опора вала -- цилиндрический роликоподшипник. На внешнем конце вала мон-тируется либо цепная звездочка 9 при приводе ротора цепной передачей от лебедки, либо шарнир карданного вала.

Разъемные вкладыши 4, состоящие из двух половин, устанав-ливают в проходное отверстие ротора, верхняя часть которого снабжена квадратной выемкой. Верхняя часть вкладышей также имеет квадратную форму, в которую входят выступы верхней части зажимов 5 ведущей трубы или роликового зажима при бу-рении. При СПО в отверстие вкладышей вставляют конусную втулку для клинового захвата. При бурении зажимы 5 или роли-ковые зажимы закрепляют болтами, оставляют на ведущей трубе и вместе с ней отпускают в отверстие вкладышей 4.

Стопорное устройство 10 служит для фиксации стола ротора. Рукоятка управления стопорным устройством расположена в углублении верхней ограды ротора. В углублении она защищена от повреждений и, кроме того, не мешает работать. При перево-де рукоятки в рабочее положение выдвигается упор, входящий в одну из специальных прорезей на наружной поверхности стола, и препятствует вращению.

Для облегчения труда рабочих и ускорения СПО роторы комп-лектуют пневматическими клиновыми захватами, для чего на роторе предусмотрен кронштейн, к которому присоединяется ме-ханизм подъема и опускания в отверстие ротора клиньев.

Диаметр отверстия в столе ротора и максимальная статиче-ская нагрузка на стол ротора --основные классификационные параметры. Они определяют максимальный диаметр долота и максимальные диаметр и вес обсадной колонны, которая может быть спущена в скважину.

Основные характеристики роторов приведены в табл. V.I.

Для обеспечения взаимозаменяемости внутренние размеры роторов и вкладышей и наружные размеры вкладышей стандар-тизованы. Также стандартизованы длина и диаметр конца при-водного вала ротора и расстояние от оси отверстия стола до плос-кости первого ряда зубьев приводной звездочки, обеспечивающее возможность применения ротора на любой буровой установке.

БУРОВЫЕ НАСОСЫ И ОБОРУДОВАНИЕ ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ

ФУНКЦИИ И СХЕМА ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ

Буровые насосы и циркуляционная система выполняют сле-дующие функции:

нагнетание бурового раствора в бурильную колонну для обес-печения циркуляции в скважине в процессе бурения и эффектив-ной очистки забоя и долота от выбуренной породы, промывки, ликвидации аварий, создания скорости подъема раствора в затрубном пространстве, достаточной для выноса породы на по-верхность;

подвод к долоту гидравлической мощности, обеспечивающей высокую скорость истечения (до 180 м/с) раствора из его наса-док для частичного разрушения породы и очистки забоя от вы-буренных частиц;

подвод энергии к гидравлическому забойному двигателю.

На рис. VII. 1 показаны схема циркуляции бурового раствора и примерное распределение потерь напора в отдельных элемен-тах циркуляционной системы скважины глубиной 3000 м при бу-рении роторным способом.

В процессе бурения в большинстве случаев раствор цирку-лирует по замкнутому контуру. Из резервуаров 13 очищенный и подготовленный раствор поступает в подпорные насосы 14, кото-рые подают его в буровые насосы /. Последние перекачивают раствор под высоким давлением (до 30 МПа) по нагнетательной линии, через стояк 2, гибкий рукав 3, вертлюг 4, ведущую трубу 5 к устью скважины 6. Часть давления насосов при этом расходуется на преодоление сопротивлений в наземной системе. Далее буровой раствор проходит по бурильной колонне 7 (бу-рильным трубам, УБТ и забойному двигателю 9) к долоту 10. На этом пути давление раствора снижается вследствие затрат энергии на преодоление гидравлических сопротивлений.

Затем буровой раствор вследствие разности давлений внутри бурильных труб и на забое скважины с большой скоростью выходит из насадок долота, очищая забой и долото от выбурен-ной породы. Оставшаяся часть энергии раствора затрачивается на подъем выбуренной породы и преодоление сопротивлений в затрубном кольцевом пространстве 8 . Поднятый на поверхность к устью 6 отработанный раствор проходит по растворопроводу 11 в блок очистки 12, где из него удаляются в амбар 15 частицы выбуренной породы, песок, ил, газ и другие примеси, поступает в резервуары 13 с устройствами 16 для восстановления его параметров и снова направляется в подпорные насосы.

Нагнетательная линия состоит из трубопровода высокого дав-ления, по которому раствор подается от насосов / к стояку 2 и гибкому рукаву 3, соединяющему стояк 2 с вертлюгом 4. Напор-ная линия оборудуется задвижками и контрольно-измерительной аппаратурой. Для работы в районах с холодным климатом пре-дусматривается система обогрева трубопроводов.

Сливная система оборудуется устройствами для очистки и приготовления бурового раствора, резервуарами, всасывающей линией, фильтрами, нагнетательными центробежными насосами, задвижками и емкостями для хранения раствора.

ВЕРТЛЮГИ И БУРОВЫЕ РУКАВА

НАЗНАЧЕНИЕ И СХЕМЫ

Вертлюг -- промежуточное звено между поступательно пере-мещающимся талевым блоком с крюком, буровым рукавом и вращающейся бурильной колонной, которая при помощи замко-вой резьбы соединяется через ведущую трубу со стволом верт-люга. Для обеспечения подачи бурового раствора или газа пере-мещающийся вертлюг соединен с напорной линией при помощи гибкого бурового рукава, один конец которого крепится к отво-ду вертлюга, а второй -- к стояку на высоте, несколько большей половины его длины.

На рис. VIII. 1 показана схема расположе-ния вертлюга в буровой при бурении.

Вертлюг обеспечивает возможность свободного вращения бу-рильной колонны при невращающихся корпусе и талевой системе. Он подвешен на ее крюке и выполняет функции сальника для подачи внутрь вращающейся колонны бурового раствора, закачиваемого насосами по гибкому рукаву.

На рис. VIII.2 показана принципиальная схема вертлюга для бурения глубоких скважин. Основная вращающаяся его де-таль -- полый ствол 1, воспринимающий вес бурильной колонны. Ствол, смонтирован в корпусе 3 на радиальных 4 и 7 и упор-ных 5 и 6 подшипниках, снабжен фланцем, передающим вес колонны через главную опору 5 на корпус 3, подвешенный к крюку на штропе 12. Опоры ствола фиксируют его положение в корпусе, препятствуют осевым, вертикальным и радиальным перемещениям и обеспечивают устойчивое положение и лег-кость вращения.

Вес корпуса вертлюга со шлангом, осевые толчки и удары колонны снизу вверх воспринимаются вспомогательной опо-рой 6. Ствол вертлюга -- ведомый элемент системы. При приня-том в бурении нормальном направлении вращения бурильной колонны (по часовой стрелке, если смотреть сверху на ротор) ствол и все детали, связанные с ним, во избежание самоотвин-чивания имеют левые резьбы. Штроп 12 крепится к корпусу на осях 16, смонтированных в приливах корпуса. Приливы имеют форму карманов, которые ограничивают угол поворота штропа ( -- 40°) для установки его в положение, удобное для захвата крюком, когда вертлюг с ведущей трубой находится в шурфе.

К крышке корпуса 15 прикреплен отвод 13, к которому при-соединяется буровой рукав 14. Буровой раствор поступает из рукава через отвод в присоединенную к нему напорную тру-бу 9, из которой он попадает во внутренний канал ствола верт-люга. Зазор между корпусом напорного сальника 10 и напорной трубой 9 уплотнен сальником 11, обеспечивающим герметич-ность при больших рабочих давлениях бурового раствора.

Напорный сальник 11 во время роторного бурения эксплуа-тируется в тяжелых условиях, срок его службы (50--100 ч) во много раз меньше, чем остальных деталей вертлюга, поэтому он выполняется быстросменным. В верхней и нижней частях кор-пуса вертлюга для уплотнения зазора между корпусом и вра-щающимся стволом устанавливают самоуплотняющиеся ман-жетные сальники 2 и 8, которые предохраняют от вытекания масла из корпуса и попадания в него снаружи влаги и грязи.

В вертлюгах есть устройства для заливки, спуска масла и контроля его уровня, а также сапун для уравновешивания с атмосферным давлением паров внутри корпуса, создающего-ся при нагреве в процессе работы. Это устройство не пропуска-ет масло при транспортировке вертлюга в горизонтальном по-ложении.

Типоразмер вертлюга определяется динамической нагрузкой, которую он может воспринимать в процессе вращения бурильной колонны, допустимой статической нагрузкой и частотой вращения, предельным рабочим давлением прокачиваемого бу-рового раствора, массой и габаритными размерами. Каждый вертлюг имеет стандартную левую коническую замковую резьбу для присоединения к ведущей трубе двух-трех размеров. Кор-пус вертлюга выполняется обтекаемой формы для того, чтобы он не цеплялся за детали вышки при перемещениях. Вертлюги приспособлены к транспортировке любыми транспортными средствами без упаковки.

КОНСТРУКЦИИ ВЕРТЛЮГОВ

По конструкции вертлюги для бурения глубоких скважин, изготовляемые отечественными заводами, отличаются мало. Рассмотрим конструкцию вертлюга УВ-250МА (рис. VIII.3).Он состоит из литого стального корпуса 5 с двумя карманами для присоединения к нему штропа 11 при помощи пальцев. Внут-ренняя полость корпуса разделена по высоте горизонтальной перемычкой, служащей опорной поверхностью основной опоры ствола, усиленной для жесткости вертикальными ребрами. Эта перемычка имеет кольцевую площадку, на которую устанавли-вается основной опорный подшипник 4.

Над основной опорой в корпусе находятся вспомогательный упорный подшипник 6, воспринимающий усилия, которые воз-никают вдоль оси от ротора к вертлюгу, и верхний радиальный подшипник 7. Второй радиальный подшипник 3, центрирующий ствол вертлюга 1, расположен в нижней части корпуса. Ствол вертлюга / с вращающимися элементами подшипников 3, 4, 6 и 7 и верхним напорным сальником 9 составляют группу вра-щающихся деталей вертлюга.

Сверху корпус вертлюга имеет круглое отверстие. Это от-верстие закрывается крышкой с кронштейном 8, к которому крепится подвод 10. В крышке 8 установлено верхнее сальнико-вое уплотнение корпуса, а нижнее уплотнение 2 крепится к ниж-ней части корпуса. Этот сальник служит для предупреждения утечки масла из корпуса вертлюга в процессе работы.

Верхний радиальный 7 и упорный 6 подшипники малонагружены и смазываются консистентной смазкой, для чего в крышке предусмотрена пресс-масленка. Главная опора и нижний радиальный подшипник смазываются жидкой смазкой, которой наполнена масляная ванна корпуса. Жидкое масло служит не только для смазки, но и для отвода тепла, выделяющегося в подшипниках. Надо иметь в виду, что при прокачке через вертлюг бурового раствора с высокой температурой масло в ванне вертлюга нагревается и добавочное тепло трения приво-дит к повышению температуры выше допустимой (иногда более 100 °С).

Применение быстросъемного напорного сальника значитель-но упростило и ускорило его замену, а конструкция ствола ста-ла проще и меньшей длины. Практика эксплуатации показыва-ет, что применение большого числа манжет в сальнике не уве-личивает срок службы уплотнения вертлюга, так как происходит перегрев манжет и их разрушение вследствие плохого теплоотвода. Оптимальным является использование двух-трех ра-бочих манжет. В зависимости от конструкции уплотнение осу-ществляется либо первой, либо последней манжетой, при выхо-де из строя которой начинает работать вторая манжета и т. д.

Быстросъемное напорное уплотнение (рис. VIII.4), приме-няемое в вертлюге УВ-250МА, обеспечивает подачу в ствол вертлюга бурового раствора под давлением до 25 МПа. Рас-твор от подвода 4 вертлюга поступает через напорную трубу 9, расположенную в стволе 15 вертлюга. Эта труба жестко не за-креплена и является как бы плавающей. На ее верхнем конце установлена шпонка, входящая в паз кольца 7, неподвижно прикрепленного верхней нажимной гайкой 3 к втулке 5.

Зазоры между подводом 4, кольцом 7 и трубой 9 уплотнены торцовой 6 и радиальной 8 манжетами. Необходимое нажатие на уплотнения создается верхней нажимной гайкой 3 навинчи-ванием ее на втулку 5. Нижнее вращающееся уплотняющее устройство состоит из стакана 2, прижатого нижней нажимной гайкой / к торцу ствола 15 вертлюга. В стакане размещены четыре самоуплотняющиеся манжеты 10, разделенные между собой кольцами 12, создающими камеры, ограничивающие де-формацию манжет под давлением прокачиваемого раствора.

Для уменьшения трения и износа трубы 9 и манжет 10 в манжетные камеры периодически закачивают ручным насо-сом через пресс-масленку 11 консистентную смазку. Верхняя манжета служит для удержания смазки при закачке, а нижние три манжеты уплотняют зазоры между трубой 9, кольцами 12 и грундбуксой 13, нижний торец которой уплотнен торцовой манжетой 14. Необходимое нажатие на элементы сальника осу-ществляется нижней нажимной гайкой /.

Уплотнительные манжеты сальника изготовляют из маслостойких резин или резиноасбестовых композиций, или пластмасс полиуретановой группы. Напорные трубы изготовляют из низ-колегированных цементуемых сталей марок 12ХН2А, 20ХНЗА

и др. Наружная поверхность труб подвергается термохимической обработке для создания слоя толщиной 1,5--3 мм твердостью 56--62 HRC. Наружная поверх-ность подвергается высокоточной механической обработке, поли-руется или выглаживается роли-ком для уменьшения шерохова-тости.

Рис. VIII.5. Нижнее уплотнение масляной ванны вертлюга

Нижнее уплотнение масляной ванны вертлюга (рис. VIII.5) служит для предохранения утеч-ки смазки при вращении верти-кально расположенного ствола вертлюга. Уплотняющее устрой-ство состоит из двух манжет 4, смонтированных в нижней части

крышки 9 корпуса вертлюга. Кольцо 8 при помощи болтов 7 нажимает на манжеты 4, которые прилегают к наружной по-верхности втулки 3, надетой на ствол 5 вертлюга. Втулка 3, упирающаяся в кольцо подшипника 1, крепится на стволе 5 гайкой 6 и уплотняется резиновым кольцом 2. В полость между манжетами 4 подается через пресс-масленку 10 консистентная смазка, предохраняющая вытекание масла из ванны. Втулка 3 предохраняет от износа поверхность ствола, а при износе ее меняют.

В нижней крышке корпуса предусмотрена отстойная зона, куда через отверстия в корпусе попадают с маслом продукты износа. С боку в нижней части крышки предусмотрено сливное отверстие, закрываемое пробкой, через которую периодически спускают масло из ванны вертлюга.

Ствол вертлюга -- наиболее нагруженная деталь. На него действуют растягивающая сила от веса бурильной колонны, из-гибающий момент и внутреннее давление раствора. Нижний конец ствола имеет левую внутреннюю замковую резьбу по ГОСТ 5286--75, служащую для соединения через предохрани-тельный переводник с ведущей трубой. Стволы изготовляют из конструкционных низколегированных сталей марок 40Х, 40ХН, 38ХГН и др. Ствол подвергается закалке с отпуском до твердо-сти 280--320 НВ.

На опоры ствола вертлюга действуют в основном осевые на-грузки: главная опора воспринимает вес бурильной колонны, а радиальные подшипники центрируют подвешенный на крюке вертлюг и воспринимают нагрузки, создаваемые его весом и частью веса прикрепленного к нему гибкого шланга.

В качестве главной опоры в вертлюгах применяют упорные или радиально-упорные подшипники. В тяжело нагруженных вертлюгах для бурения глубоких скважин используют ролико-подшипники с коническими, бочкообразными и цилиндрически-ми роликами. Эти подшипники применяют при частоте враще-ния не более 100 об/мин, так как цилиндрические ролики рабо-тают с проскальзыванием, что приводит к их износу.

В вертлюгах для геологоразведочного бурения скважин не-большой глубины и при легких бурильных колоннах использу-ют радиально-упорные или радиальные шарикоподшипники, для вспомогательных опор вертлюгов обычно -- упорные шарико-вые или конические роликоподшипники стандартных серий.

ПРИВОДЫ БУРОВЫХ УСТАНОВОК

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Приводом буровой установки называется совокупность дви-гателей и регулирующих их работу трансмиссий и устройств, преобразующих тепловую или электрическую энергию в механи-ческую, управляющих механической энергией и передающих ее исполнительному оборудованию -- насосам, ротору, лебедке и др. Мощность привода (на входе в трансмиссию) характери-зует основные его потребительские и технические свойства и яв-ляется классификационным (главным) параметром.

В зависимости от используемого первичного источника энер-гии приводы делятся на автономные, не зависящие от системы энергоснабжения, и неавтономные, зависящие от системы энер-госнабжения, с питанием от промышленных электрических се-тей. К автономным приводам относятся двигатели внут-реннего сгорания (ДВС) с механической, гидравлической или электропередачей. К неавтономным приводам отно-сятся: электродвигатели постоянного тока, питаемые от промышленных сетей переменного тока через тиристорные выпря-мительные станции управления; электродвигатели переменного тока с гидравлической либо электродинамической трансмиссией или регулируемые тиристорными системами.

В соответствии с кинематикой установки привод может иметь три основных исполнения: индивидуальный, групповой и ком-бинированный или смешанный.

Индивидуальный привод -- каждый исполнительный меха-низм (лебедка, насос или ротор) приводится от электродвига-телей или ДВС независимо друг от друга. Более широко этот вид привода распространен с электродвигателями. При его ис-пользовании достигается высокая маневренность в компоновке и размещении бурового оборудования на основаниях при мон-таже.

Групповой привод -- несколько двигателей соединены сум-мирующей трансмиссией и приводят несколько исполнительных механизмов. Его применяют при двигателях внутреннего сго-рания,

Комбинированный привод -- использование индивидуального и группового приводов в одной установке. Например, насосы приводятся от индивидуальных двигателей, а лебедка и ротор от общего двигателя. Во всех случаях характеристики привода должны наиболее полно удовлетворять требуемым характери-стикам исполнительных механизмов.

Потребителями энергии буровой установки являются: в процессе бурения -- буровые насосы, ротор (при роторном бурении), устройства для приготовления и очистки бурового раствора от выбуренной породы; компрессор, водяной насос и др.;

при спуске и подъеме колонны труб -- лебедка, компрессор, водяной насос и механизированный ключ.

Приводы также делятся на главные (приводы лебедки, насосов и ротора) и вспомогательные (приводы осталь-ных устройств и механизмов установки). Мощность, потребляе-мая вспомогательными устройствами, не превышает 10--15% мощности, потребляемой главным оборудованием.

Гибкость характеристики -- способность силового привода автоматически или при участии оператора в процессе работы быстро приспосабливаться к изменениям нагрузок и частот вра-щения исполнительных механизмов. Гибкость характеристики зависит от коэффициента приспособляемости, диапазона регу-лирования частоты вращения валов силового привода и прие-мистости двигателя.

Коэффициент гибкости характеристики определяется отно-шением изменения частоты вращения к вызванному им откло-нению момента нагрузки. Он пропорционален передаточному отношению и обрат-но пропорционален коэффициенту перегрузки.

Приемистостью называется интенсивность осуществления переходных процессов, т. е. время, в течение которого двига-тель и силовой привод реагируют на изменение нагрузки и из-меняют частоту вращения.

Приспособляемость -- свойство силового привода изменять крутящий момент и частоту вращения в зависимости от момен-та сопротивления. Собственная приспособляе-мость-- свойство двигателя приспособляться к внешней на-грузке. Искусственная приспособляемость -- свой-ство трансмиссий приспосабливать характеристику двигателя к изменению внешней нагрузки.

ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК

ЭЛЕМЕНТЫ ТРАНСМИССИИ БУРОВЫХ УСТАНОВОК

В буровом оборудовании для осуществления кинематиче-ской связи между валами в механизмах, изменения скорости и направления вращения, преобразования крутящих моментов ис-пользуют цепные, клиноременные и зубчатые передачи. В уста-новках малой мощности для геологоразведочного бурения при небольших межосевых расстояниях между валами (до 0,5 м) ис-пользуют почти всегда зубчатые передачи, а при межосевых расстояниях более 0,5 м -- клиноременные. В установках для эксплуатационного бурения для передачи «больших мощностей (500--2000 кВт и более) и межосевых рас-стояниях более 1 м применяют многорядные цепные и клиноременные передачи. Зубчатые передачи используют при межосе-вых расстояниях менее 1м -- в редукторах насосов, реверсив-ных устройствах КПП, приводах роторов и др.

СИСТЕМЫ УПРАВЛЕНИЯ БУРОВЫМИ УСТАНОВКАМИ

ВИДЫ, ТРЕБОВАНИЯ И ХАРАКТЕРИСТИКИ

Буровая установка представляет собой сложный комплекс различных машин и механизмов, обеспечивающих выполнение разнообразных технологических операций при проводке сква-жин. Эффективность работы этого комплекса зависит от экс-плуатационных качеств, маневренности, четкости и надежности работы всех его элементов. Важную роль в комплексе играет система управления.

Системы управления обеспечивают:

пуск, остановку и регулировку работы двигателей;

включение и выключение трансмиссий, которые блокируют двигатели, приводящие буровые насоса, ротор или лебедку;

включение и выключение буровых насосов, лебедки, ротора, механизма подачи и тормозов (гидравлического, электрического и ленточного); изменение частоты вращения барабана лебедки, насосов и ротора; включение и выключение устройств для свинчивания и раз-винчивания бурильных труб;

управление работой ключей, клиньев и других механизмов при отвинчивании и установке бурильных свечей в магазин в процессе спуска и подъема колонны;

управление оборудованием для герметизации устья скважи-ны при бурении и проявлениях газа;

включение и выключение компрессора, вспомогательной ле-бедки или насоса, осветительной установки, устройств для очи-стки и приготовления бурового раствора и других вспомогатель-ных механизмов.

Для приведения в действие органов управления используют-ся различные виды энергии: в системах ручного механического управления --сила оператора; в пневматических, гидравличе-ских и электрических системах --энергия сжатого воздуха, жид-кости или электричества.

Система управления состоит из двух типов органов: управ-ляющих функциями главных и вспомогательных исполнитель-ных механизмов и аппаратуры, сигнализирующей оператору или регистрирующей результаты исполнения команды.

Система управления (рис. XI. 1) содержит пять основных органов:

-- воспринимающий команду (кнопка, рукоятка, рычаг, пе-даль и др.), на который воздействует оператор -- человек, про-граммирующее устройство или микропроцессор;

-- промежуточный, передающий команду к исполнительным механизмам с использованием внешней энергии: тяги, трубопро-вода, электрокабеля и др.;

-- исполнительный, воздействующий на механизм, выпол-няющий технологическую функцию: муфта сцепления, золотник, кран и др.;

-- фиксирующий или ограничивающий исполнение коман-ды: защелка, концевой выключатель, стопор и др;

-- обратная связь, информирующая оператора об исполне-нии команды или заданного режима работы: измерительный прибор, манометр, термометр, динамометр, световая или звуко-вая сигнализация.

В буровых установках применяется три вида систем управ-ления:

централизованная -- расположенная у поста бурильщика и позволяющая ему управлять основными исполнительными меха-низмами: лебедкой, насосами, ротором, превенторами и др.;

индивидуальная или местная -- расположенная вблизи того или иного агрегата;

смешанная---позволяющая управлять агрегатом как с поста бурильщика, так и непосредственно около агрегата; например, ДВС с суммирующей трансмиссией могут управляться дизели-стом или бурильщиком и др.

Всеми устройствами управляют с постов бурильщика, дизе-листа или с пульта, расположенного вблизи того или иного агрегата (оборудования). В соответствии с выполняемыми функциями цепи управления подразделяются на независимые и взаимосвязанные. Независимые цепи применяют в тех случаях, когда устройства не связаны друг с другом, например, включение лебедки, насосов, ротора. Взаимосвязанные (сблокированные) системы управления используют, когда недо-пустимо одновременное включение нескольких движений, напри-мер, одновременное включение прямого и обратного вращения ротора или двух скоростей лебедки.

В связи со сложностью и многообразием функций, выполняе-мых механизмами для обеспечения маневренности, быстроты и удобства манипулирования, в буровых установках применяют комбинированные системы управления, позво-ляющие наиболее полно удовлетворить все требования.

Степень совершенства системы управления зависит от ее качеств, главными из которых являются:

мощность, усилие или крутящий момент для осуществления операций управления;

легкость, маневренность и автоматизм органов, на которые воздействует оператор и которые осуществляют исполнение ко-манды.

Совершенство системы управления зависит как от конструк-ции органов системы управления, так и от рабочей позы бу-рильщика и усилий, затрачиваемых им в процессе управления. Неудобство позы рабочего, необходимость приложения больших усилий вызывают быстрое утомление рабочего и снижают его производительность. Усилие, затрачиваемое рабочим на мани-пуляции рычагами, обычно не более 30--50 Н, тормозной руко-яткой-- не более 150 Н, ножными педалями и редко переклю-чаемыми рычагами -- не более 100--200 Н. Давление рукоятки, кроме тормозной, обычно осуществляется в течение нескольких секунд и неутомительно для бурильщика. Рукоятки и педали располагают так, чтобы ими было удобно пользоваться без изменения рабочей позы и места бурильщика.

Четкость, стабильность и мнемоничность управления обеспе-чиваются тем, что каждая команда соответствует определенной функции и не вызывает изменения положения других органов управления. Величина хода, например, рукоятки, при включе-нии и выключении должна быть всегда одинакова и стабильна при каждом повторении команды.

Мнемоничность управления обеспечивается таким располо-жением органов управления, при котором оператор освобожден от излишнего напряжения памяти. Оператор не должен каждый раз вспоминать, где находится тот или иной рычаг управления, в какую сторону и на какое расстояние следует его передвинуть или повернуть, чтобы включить или выключить, например, ключ для свинчивания или развинчивания бурильных замков.

Направление движения руки оператора должно совпадать с направлением движения механизма. При вертикальном рас-положении рычага, например тормозного, торможение осуще-ствляется движением рычага вниз, так как при этом удобнее приложить к усилию руки еще вес тела рабочего, а при растормаживании наоборот. При горизонтальном расположении рыча-гов включение, требующее большого усилия рабочего, осуществ-ляется поворотом рычага «на себя», а выключение -- «от себя». Штурвалы при включении обычно вращают «от себя», а при выключении -- «на себя». Педальное управление при рабочей позе стоя осуществляется только в механизмах, требующих эпизодического включения. Включение осуществляется нажати-ем педали «вниз», а выключение -- «вверх». При кнопочном управлении -- верхняя кнопка «пуск», а нижняя «стоп».

Пульт бурильщика снабжается табличкой с указанием на-правления движения каждой кнопки или рычага и выполнения ими функций. Надписи должны быть четкими, хорошо освещать-ся и легко читаться без изменения рабочей позы оператора. Прогрессивность, мягкость и гибкость -- важные качества систем управления. Прогрессивность обеспечивает безударность и мягкость включения за счет того, что полное усилие на органе управления возникает не сразу, а с некоторым запаздыванием, а затем быстро и энергично возрастает до требуемой величины, осуществляя включение без рывков и ударов. Например, в лен-точных тормозах, буровых лебедок применяют кулачковые или рычажные механизмы, с помощью которых передаточное отно-шение изменяется по мере поворота рычага. Это обеспечивает прогрессивное увеличение тормозного усилия.

Быстродействие системы управления -- важное качество для таких механизмов, как подъемная система буровых лебедок, вы-полняющая массовые, часто повторяющиеся операции при СПО. При этом оператор должен всегда знать или видеть, что его команда выполнена точно.

Структурная прочность органов системы управления и их конструкция выполняются такими, чтобы не происходило изно-са и деформации их элементов в процессе работы, монтажа, демонтажа и транспортировки буровой установки, приводящих к нарушению точности и четкости управления.

Безопасность системы управления обеспечивается хорошим расположением органов управления, легкостью их обслужива-ния, соблюдением необходимых расстояний, хорошей освещен-ностью, легкостью и удобством манипулирования. Все это ис-ключает возможность травматизма обслуживающего персонала и порчу оборудования.

ОБОРУДОВАНИЕ ДЛЯ ГЕРМЕТИЗАЦИИ УСТЬЯ СКВАЖИНЫ

В настоящее время при бурении не только разведочных, но и эксплуатационных скважин широко применяется оборудова-ние для герметизации устья скважин. Раньше это оборудование использовали в основном для борьбы с выбросами жидкости и газа при проявлениях высоких давлений в скважине. В связи с применением более легких растворов для бурения давление в скважине в процессе бурения регулируют при помощи превен-торов. Изменились требования к охране окружающей среды и недр земли.

Для герметизации устья скважины используют три вида пре-венторов: плашечные -- глухие или проходные для полного перекрытия отверстия или кольцевого пространства, если в сква-жине находится колонна труб; универсальные -- для пере-крытия отверстия в скважине, если в ней находится любая часть бурильной колонны: замок, труба, ведущая труба, вра-щающиеся -- для уплотнения устья скважины с вращающей-ся в ней трубой или ведущей трубой.

Ни плашечные, ни универсальные превенторы не рассчитаны на вращение колонны, если они полностью закрыты.

СХЕМЫ ОБОРУДОВАНИЯ ДЛЯ ГЕРМЕТИЗАЦИИ УСТЬЯ СКВАЖИНЫ

Существует большое разнообразие конструкций скважин и условий бурения, поэтому для обеспечения надежности охраны окружающей среды и недр земли схемы оборудования устья скважин стандартизованы. ГОСТ 13862--80 предусматривает четыре типовых схемы оборудования устья скважин с числом плашечных превенторов от одного до четырех при бурении на суше. Схемы оборудования при установке превенторов на дне моря и большой толще воды значительно сложнее.

В зависимости от ожидаемой интенсивности нефтегазопроявлений в скважине рекомендуются следующие схемы монтажа оборудования для герметизации устья скважины:

двухпревенторная с двумя линиями манифольда (рис.XIII.а);

трехпревенторная с двумя линиями манифольда (рис. XIII.1,6);

трехпревенторная с тремя линиями манифольда (рис. XIII.1,в);

трехпревенторная с четырьями линиями манифольда (рис. XIII.1,г).

Обвязка превенторов -- манифольд -- предназначена для управления давлением в скважине при нефтегазопроявлениях путем воздействия на пласт закачкой раствора и создания про-тиводавления на него. Манифольд состоит из линий дросселиро-вания и глушения, которые соединяются со стволовой частью оборудования для герметизации и представляют собой систему трубопроводов и арматуры (задвижки и регулируемые дроссели с ручным или гидравлическим управлением, манометры и др.).

Линия глушения соединяется с буровыми насосами и служит для закачки в скважину утяжеленного раствора по межтрубному пространству. При необходимости линия глушения используется для слива газированного бурового раствора в ка-меру-дегазатор циркуляционной системы буровой установки.

Линия дросселирования служит для слива бурового раствора и отбора флюидов из скважины с противодавлением на пласт, а также для закачки в скважину жидкости с по-мощью цементировочных агрегатов. В схеме на рис. XIII.1, г, применяемой при бурении скважин с повышенной опасностью нефтегазопроявлений, верхняя линия дросселирования служит резервной.

Манифольды рассчитывают на рабочее давление 21, 35, 70 МПа. В зависимости от конструкций задвижек они бывают двух типов: МП -- с клиновыми задвижками и МПП -- с пря-моточными задвижками. Манифольды типа МП в блочном ис-полнении шифруются МПВ. В шифре манифольдов цифрами указывается диаметр их проходного отверстия (в мм) и рабочее давление (в МПа). Например, манифольд диаметром 80 мм (принимаемый в настоящее время для всех манифольдов) на давление 35 МПа шифруется МПВ-80Х35.

Манифольды устанавливают на рамах-салазках с телескопи-ческими стойками, позволяющими регулировать высоту их рас-положения в пределах 0,65--1,25 м в зависимости от положения колонной головки над устьем скважины. Высота расположения головки изменяется после спуска и цементирования каждой обсадной колонны. Высота разъемного желоба устанавливается по расстоянию между фланцевой катушкой и ротором буровой установки.

Как видно из схем на рис. XIII.1, на установках монтируют один или два плашечных превентора. В морских скважинах с устьем на дне моря устанавливают три, а иногда и четыре плашечных превентора, а над ними универсальный превентор. В морских установках монтируют иногда два универсальных превентора. При бурении под давлением над этим превентором располагают вращающийся превентор.

После монтажа линии манифольдов превенторы подвергают гидроиспытаниям под давлением в 1,5 раза превышающим ра-бочее. Испытания проводят с использованием смазки «Нефте-газ-203» марки В или индустриального масла 12 или 20 по ГОСТ 20799--75 с добавкой 25--30% по объему смазки «Неф-темаз-203» марки Б.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРЕВЕНТОРОВ

Плашечные превенторы

Превентор, выпускаемый ВЗБТ (рис. ХШ.2) состоит из стального литого корпуса 7, к которому на шпильках крепятся крышки / четырех гидравлических цилиндров 2. В полости А цилиндра 2 размещен главный поршень 3, укрепленный на што-ке 6. Внутри поршня размещен вспомогательный поршень 4, служащий для фиксации плашек 10 в закрытом состоянии от-верстия Г ствола скважины. Для закрытия отверстия плашками жидкость, управляющая их работой, поступает в полость А, под действием давления которой поршень перемещается слева на-право.

Вспомогательный поршень 4 также перемещается вправо, и в конечном положении он нажимает на кольцо-защелку 5 и фиксирует тем самым плашки 10 в закрытом состоянии, что исключает самопроизвольное их открытие. Чтобы открыть от-верстие Г ствола, надо передвинуть плашки влево. Для этого управляющая жидкость должна быть подана под давлением в полость В, которая перемещает вспомогательный поршень 4 по штоку 6 влево и открывает защелку 5. Этот поршень, дойдя до упора в главный поршень 3, передвигает его влево, тем са-мым раскрывая плашки. При этом управляющая жидкость, на-ходящаяся в полости Ј, выжимается в систему управления.

Плашки 10 превентора могут быть заменены в зависимости от диаметра уплотняемых труб. Торец плашек по окружности уплотняется резиновой манжетой 9, а крышка 1 -- проклад-кой //. Каждый из превенторов управляется самостоятельно, но обе плашки каждого превентора действуют одновременно. Отверстия 8 в корпусе 7 служат для присоединения превентора к манифольду. Нижним торцом корпус крепится к фланцу устья скважины, а к верхнему его торцу присоединяется универсаль-ный превентор.

Как видно, плашечный превентор с гидравлическим управ-лением должен иметь две линии управления: одну для управ-ления фиксацией положения плашек, вторую для их перемеще-ния. Превенторы с гидравлическим управлением в основном применяют при бурении на море. В ряде случаев нижний пре-вентор оборудуется плашками со срезающими ножами для пе-ререзания находящейся в скважине колонны труб.

Для бурения на суше применяют в основном однокорпусные плашечные превенторы с двойной системой перемещения пла-шек: гидравлической и механической без системы гидравличе-ского управления их фиксацией. По конструкции эти превенто-ры (рис. XIII.3) значительно проще. Такой превентор состоит из корпуса 2, внутри которого помещаются плашки и крышки с гидроцилиндрами 1 и 5. Корпус 2 представляет собой сталь-ную отливку коробчатого сечения, имеющую проходное верти-кальное отверстие диаметром D и сквозную горизонтальную прямоугольную полость, в которой размещаются плашки. Пере-крывающие устье скважины плашки комплектуются под опре-деленный размер трубы. При отсутствии в скважине бурильных труб устье перекрывается глухими плашками.

Плашки превентора разъемной конструкции состоят из кор-пуса 9, сменных вкладышей 11 и резинового уплотнения 10. Плашку в собранном виде насаживают на Г-образный паз а штока 7 и вставляют в корпус превентора. Полость корпуса с обеих сторон закрывается откидными крышками гидроцилинд-ров / и 5, шарнирно подвешенными на корпусе. Крышка к кор-пусу крепится болтами 4.

Каждая плашка перемещается поршнем 6 гидравлического цилиндра 8. Масло от коллектора 3 по стальным трубкам и через поворотное ниппельное соединение под давлением посту-пает в гидроцилиндры. Полость плашек превентора в зимнее время (при температуре --5°С и ниже) обогревается паром, подаваемым в паропроводы. Поршень со штоком, крышка и цилиндры уплотняются при помощи резиновых колец.

Универсальные превенторы

Универсальный превентор предназначен для повышения на-дежности герметизации устья скважины. Его основной рабочий элемент -- мощное кольцевое упругое уплотнение, которое при открытом положении превентора позволяет проходить колонне бурильных труб, а при закрытом положении---сжимается, вследствие чего резиновое уплотнение обжимает трубу (веду-щую трубу, замок) и герметизирует кольцевое пространство между бурильной и обсадной колоннами. Эластичность резино-вого уплотнения позволяет закрывать превентор на трубах различного диаметра, на замках и УБТ. Применение универ-сальных превенторов дает возможность вращать и расхажи-вать колонну при герметизированном кольцевом зазоре.

Кольцевое уплотнение сжимается либо в результате непо-средственного воздействия гидравлического усилия на уплот-няющий элемент, либо вследствие воздействия этого усилия на уплотнение через специальный кольцевой поршень.

Универсальные превенторы со сферическим уплотняющим элементом и с коническим уплотнителем изготовляет ВЗБТ.

Универсальный гидравлический превентор со сферическим уплотнением плунжерного действия (рис. XIII.4) состоит из корпуса 3, кольцевого плунжера 5 и кольцевого резинометал-лического сферического уплотнителя /. Уплотнитель имеет форму массивного кольца, армированного металлическими вставками двухтаврового сечения для жесткости и снижения износа за счет более равномерного распределения напряжений. Плун-жер 5 ступенчатой формы с центральным отверстием. Уплотни-тель / фиксируется крышкой 2 и распорным кольцом 4. Корпус, плунжер и крышка образуют в превенторе две гидравлические камеры А и Б, изолированные друг от друга манжетами плун-жера.

При подаче рабочей жидкости под плунжер 5 через отвер-стие в корпусе превентора плунжер перемещается вверх и об-жимает по сфере уплотнение / так, что оно расширяется к цент-ру и обжимает трубу, находящуюся внутри кольцевого уплот-нения. При этом давление бурового раствора в скважине будет действовать на плунжер и поджимать уплотнитель. Если в сква-жине нет колонны, уплотнитель полностью перекрывает отвер-стие. Верхняя камера Б служит для открытия превентора. При нагнетании в нее масла плунжер движется вниз, вытесняя жид-кость из камеры А в сливную линию. Уплотнитель расширяется и принимает прежнюю форму.

Кольцевой уплотнитель позволяет:

протаскивать колонны общей длиной до 2000 м с замками или муфтами с конусными фасками под углом 18°;

расхаживать и проворачивать колонны;

многократно открывать и закрывать превентор.

Конструкция превентора допускает замену уплотнителя без его демонтажа. Управление универсальным превентором может осуществляться либо с помощью ручного плунжерного насоса, либо с помощью насоса с электроприводом. Время закрытия универсального превентора гидроприводом 10 с.

Вращающиеся превенторы

Вращающийся превентор применяется для герметизации устья скважины в процессе ее бурения при вращении и расхаживании бурильной колонны, а также при СПО и повышенном давлении в скважине. Этот превентор уплотняет ведущую тру-бу, замок или бурильные трубы, он позволяет поднимать, спускать или вращать бурильную колонну, бурить с обратной промывкой, с аэрированными растворами, с продувкой газо-образным агентом, с равновес-ной системой гидростатическо-го давления на пласт, опробо-вать пласты в процессе газо-проявлений.

Основной элемент вращаю-щегося превентора (рис. ХШ.5) -- уплотнитель 2, поз-воляющий протаскивать инст-румент через его отверстие. Уплотнитель состоит из метал-лического основания и резино-вой части, прикреплен к ство-лу 4 при помощи байонетного соединения и болтов. От прово-рачивания его предохраняют шпоночные выступы, входящие в вырезы ствола.

В патроне 7 превентора на двух радиальных 5 и одном упор-ном 6 подшипниках качения смонтирован ствол 4. Манжетные уплотнения 3 служат для предохранения превентора от попада-ния в него жидкости из скважины между стволом, корпусом и патроном. Фиксация патрона 7 в корпусе / осуществляется за-щелкой 9, которая открывается под давлением масла, подавае-мого ручным насосом через штуцер 8.



курсовые работы





Рекомендуем



курсовые работы

ОБЪЯВЛЕНИЯ


курсовые работы

© «Библиотека»