курсовые работы Знание — сила. Библиотека научных работ. Коллекция рефератов
~ Коллекция рефератов, докладов, курсовых ~
 

МЕНЮ

курсовые работыГлавная
курсовые работыАрхитектура
курсовые работыАстрономия
курсовые работыБанковское биржевое дело и страхование
курсовые работыБезопасность жизнедеятельности
курсовые работыБиология и естествознание
курсовые работыБиржевое дело
курсовые работыБотаника и сельское хоз-во
курсовые работыВоенное дело
курсовые работыГенетика
курсовые работыГеография и экономическая география
курсовые работыГеология
курсовые работыГеология гидрология и геодезия
курсовые работыГосударственно-правовые
курсовые работыЗоология
курсовые работыИстория
курсовые работыИстория и исторические личности
курсовые работыКомпьютерные сети интернет
курсовые работыКулинария и продукты питания
курсовые работыМосквоведение краеведение
курсовые работыМузыка
курсовые работыПедагогика
курсовые работыПсихология
курсовые работыЭкономика туризма

курсовые работы

РЕКЛАМА


курсовые работы

ИНТЕРЕСНОЕ

курсовые работы

курсовые работы

 

Производство стали

курсовые работы

Производство стали

НМетАУ

Национальная Металлургическая Академия Украины

Кафедра технологического

проектирования

Курсовая работа

По дисциплине "Введение в специальность"

На тему: "Производство стали"

Выполнил:

Студент группы ПМ - 99

Брез А. П.

Проверил:

Проф. Друян

В. М.

Содержание

.

| |стр |

|Введение |3 |

|Производство стали |3 |

|Шлаки сталеплавильных процессов |3 |

|Основные реакции сталеплавильных процессов |4 |

|Окисление углерода |4 |

|Окисление и восстановление Mn |5 |

|Окисление и восстановление Si |5 |

|Окисление и восстановление P |5 |

|Десульфация стали |5 |

|Газы в стали |6 |

|Раскисление стали |6 |

|Производство стали в конвертерах |7 |

|Кислородно-конвертерное процесс с верхней продувкой |8 |

|Кислородно-конвертерное процесс с донной продувкой |10 |

|Конвертерный процесс с комбинированной продувкой |10 |

|Производство стали в мартеновских печах |11 |

|Производство стали в электропечах |12 |

|Выплавка стали в кислых электродуговых печах |13 |

|Способы интенсификации выплавки стали в большегрузных печах|13 |

| |14 |

|Плавка стали с рафинированием в ковше печным шлаком |14 |

|Плавка стали в индукционной печи |15 |

|Разливка стали |15 |

|Разливка стали в слитки |15 |

|Пути повышения качества стали |16 |

|Обработка жидкого металла вне сталеплавильного агрегата |18 |

|Производство стали в вакуумных печах |18 |

|Производство стали в индукционных печах |19 |

|Производство стали в вакуумных дуговых печах |20 |

|Плазменно-дуговая плавка |21 |

|Заключение |22 |

|9. Список рекомендуемой литературы | |

Введение:

Металлы относятся к числу наиболее распространенных материалов, которые

человек использует для обеспечения своих жизненных потребностей. В наши дни

трудно найти такую область производства, научно-технической деятельности

человека или просто его быта, где металлы не играли бы главенствующей роли

как конструкционного материала.

Металлы разделяют на несколько групп: черные, цветные и благородные. К

группе черных металлов относятся железо и его сплавы, марганец и хром. К

цветным относятся почти все остальные металлы периодической системы Д. И.

Менделеева.

Железо и его сплавы являются основой современной технологии и техники.

В ряду конструкционных металлов железо стоит на первом месте и не уступит

его еще долгое время, несмотря на то, что цветные металлы, полимерные и

керамические материалы находят все большее применение. Железо и его сплавы

составляют более 90 % всех металлов, применяемых в современном

производстве.

Самым важнейшим из сплавов железа является его сплав с углеродом.

Углерод придает прочность сплавам железа. Эти сплавы образуют большую

группу чугунов и сталей.

Сталями называют сплавы железа с углеродом, содержание которого не

превышает 2,14 %. Сталь – важнейший конструкционный материал для

машиностроения, транспорта и т. д.

Сталеплавильное производство – это получение стали из чугуна и

стального лома в сталеплавильных агрегатах металлургических заводов.

Сталеплавильное производство является вторым звеном в общем

производственном цикле черной металлургии. В современной металлургии

основными способами выплавки стали являются кислородно-конвертерный,

мартеновский и электросталеплавильный процессы. Соотношение между этими

видами сталеплавильного производства меняется.

Сталеплавильный процесс является окислительным процессом, так как сталь

получается в результате окисления и удаления большей части примеси чугуна –

углерода, кремния, марганца и фосфора. Отличительной особенностью

сталеплавильных процессов является наличие окислительной атмосферы.

Окисление примесей чугуна и других шихтовых материалов осуществляется

кислородом, содержащимся в газах, оксидах железа и марганца. После

окисления примесей, из металлического сплава удаляют растворенный в нем

кислород, вводят легирующие элементы и получают сталь заданного

химического состава.

[pic]

Производство стали

Шлаки сталеплавильных процессов.

Роль шлаков в процессе производства стали исключительно велика. Шлаковый

режим, определяемый количеством и составами шлака, оказывает большое

влияние на качество готовой стали, стойкость футеровки и производительность

сталеплавильного агрегата. Шлак образуется в результате окисления

составляющих части шихты, из оксидов футеровки печи, флюсов и руды. По

свойствам шлакообразующие компоненты можно разделить на кислотные (SiO2;

P2O5; TiO2; V2O5 и др.), основные (CaO; MgO; FeO; MnO и др.) и амфотерные

(Al2O3; Fe2O3; Cr2O3; V2O3 и др.) оксиды. Важнейшими компонентами шлака,

оказывающими основное влияние на его свойства, являются оксиды SiO2 и CaO.

Шлак выполняет несколько важных функций в процессе выплавки стали:

1. Связывает все оксиды (кроме СО), образующиеся в процессе окисления

примесей чугуна. Удаление таких примесей, как кремний, фосфор и сера,

происходит только после их окисления и обязательного перехода в виде

оксидов из металла в шлак. В связи с этим шлак должен быть надлежащим

образом подготовлен для усвоения и удержания оксидов примесей;

2. Во многих сталеплавильных процессах служит передатчиком кислорода из

печной атмосферы к жидкому металлу;

3. В мартеновских и дуговых сталеплавильных печах через шлак происходит

передача тепла металлу;

4. Защищает металл от насыщения газами, содержащимися в атмосфере печи.

Изменяя состав шлака, можно отчищать металл от таких вредных примесей,

как фосфор и сера, а также регулировать по ходу плавки содержание в металле

марганца, хрома и некоторых других элементов.

Для того, чтобы шлак мог успешно выполнять свои функции, он должен в

различные периоды сталеплавильного процесса иметь определенный химический

состав и необходимую текучесть (величина обратная вязкости). Эти условия

достигаются использованием в качестве шихтовых материалов плавки расчетных

количеств шлакообразующих — известняка, извести, плавикового шпата, боксита

и др.

[pic]

Основные реакции сталеплавильных процессов.

Сталь получают из чугуна и лома методом окислительного рафинирования (т.

е. очищения). Кислород для окисления содержащихся в них примесей (углерода,

марганца, кремния, фосфора и др.) поступает либо из атмосферы, либо из

железной руды или других окислителей, либо при продувки ванны газообразным

углеродом.

Окисление углерода. Особенность окисления углерода заключается в том, что

продуктом этой реакции является газообразный СО, который, выделяясь из

металлической ванны в виде пузырей, создает впечатление кипящей жидкости.

Реакцию окисления углерода, растворенного в металле можно написать в

следующем виде:

[C] + [O] = {CO}; K = [pic]

где [C]; [O] - концентрации растворенных в металле углерода и кислорода.

Как следует из уравнения для константы, при заданном значении рсо

произведение концентрации углерода и растворенного кислорода есть величина

постоянная. Следовательно, от концентрации углерода зависит концентрация

кислорода в металле. Чем выше содержание углерода в металле, тем ниже

содержание кислорода в нем и наоборот.

Окисление и восстановление марганца. Марганец как элемент, обладающий

высоким сродством к кислороду, легко окисляется как при кислом, так и при

основном процессах. Реакции окисления и восстановления марганца можно

представить следующим образом:

[Mn] + [O] [pic](MnO); [Mn] + (FeO) [pic](MnO) + [Fe]

Как показывают расчетные и экспериментальные данные, с повышением

температуры и основности шлака концентрация марганца в металле

увеличивается. Это указывает на то, что реакция окисления марганца

достигает равновесия, и окислительный процесс сменяется восстановительным.

Поскольку почти все стали содержат марганец, то его восстановление в

процессах плавки - явление желательное.

Окисление и восстановление кремния. Кремний обладает еще большим

сродством к кислороду, чем марганец, и практически полностью окисляется уже

в период плавления. Окисление кремния происходит по реакциям:

[Si] + 2[O] = (SiO2); [Si] + 2(FeO) = (SiO2) + 2 [Fe]

При плавке под основным шлаком SiO2 связывается в прочный силикат кальция

(CaO)2•SiO2, что обеспечивает почти полное окисление кремния, содержащегося

в шихте. При кислом процессе поведения кремния иное: при горячем ходе

кислого процесса имеет место интенсивное восстановление кремния.

Окисление и восстановление фосфора. Фосфор в стали является вредной

примесью, отрицательно влияющей на ее механические свойства. Поэтому

содержание фосфора в стали в зависимости от ее назначения ограничивается

пределом 0,015 - 0,016 %. Окисление фосфора можно представить следующим

образом:

2[P] + 5(FeO) = (P2O5) + 5[Fe];

(P2O5) + 3(FeO) = (FeO)3• P2O5;

(FeO)3•P2O5 + 4(CaO) = (CaO)4•P2O5 + 3(FeO);

2P + 5(FeO) + 4(CaO) = (CaO)4•P2O5 + 5Fe.

Уравнение константы можно записать в следующем виде:

K = [pic]

Откуда коэффициент распределения фосфора между металлом и шлаком:

L = (P2O5)/P2 = K[pic](FeO)5 [pic](CaO)4

Десульфация стали. Сера, также как и фосфор, является вредной примесью в

стали. Удаление серы можно представить в виде реакции

Feж + [S] +(CaO) = (CaS) + (FeO).

Уравнение для константы имеет вид:

К = [pic]

Коэффициент распределения серы

L = (S)/[S] = K(CaO)/(FeO).

Из уравнения следует, что повышение основности и снижение окисленности

шлака способствует десульфации. Положительную роль оказывает также

повышение температуры металла и активное перемешивание ванны. Повышению

степени удалении серы способствуют элементы, образующие сульфиды, более

прочные, чем сульфид железа. К таким элементам относятся редкоземельные

металлы.

Газы в стали. Газы (кислород, водород и азот) содержаться в любой стали.

Газы даже при содержании их в сотых и тысячных долях процента оказывают

отрицательное влияние на свойства металла.

Растворимость кислорода в стали характеризуется реакцией: [pic].

В готовом металле содержание кислорода должно быть минимальным.

Растворимость водорода и азота в металле починяется закону Стивенса:

[pic]; [pic], где pH и pN - парциальные давления газов; KH и KN -

растворимость водорода и азота при парциальном давлении соответствующего

газа равном, 0,1 МПа.

Уменьшение растворимости при переходе из жидкого в твердое состояние при

кристаллизации стали вызывает выделение газов из металла, что является

причиной образования ряда дефектов, например, флокенов[1], пористости в

слитках готовой стали и т. п. В присутствии некоторых элементов в металле

могут образовываться их соединения с азотом - нитриды. Наличие нитридов в

кристаллической структуре многих сталей отрицательно влияет на свойства

металла.

Азот и водород успешно удаляются из жидкой стали в результате реакции

окисления углерода. Образующийся по этой реакции СО, собирается в пузырьки,

которые вырываются на поверхность металла, пробивают находящийся под

металлов слой жидкого шлака и выходят в атмосферу. В результате этого

создается впечатление кипения жидкой ванны.

Всплывающие пузырьки СО захватывают по пути вверх некоторое количество

других газов - H2 и N2 (рис 1).

Чем энергичнее протекает кипение металла, тем меньше содержание газов и

тем лучше качество металла. Для удаления H2 и N2 применяют также вакуумную

обработку, продувку ванны нейтральным газом (аргоном) и др.

Рис. 1 Схема удаления газов из

жидкого металла в процессе кипения

Раскисление стали. Для снижения содержания кислорода в стали проводят ее

раскисление. Это, как правило, последняя и ответственная операция в

процессе выплавки стали. Раскисление - это процесс удаления кислорода,

растворенного в стали, путем связывания его в оксиды различных металлов,

имеющих большее сродство к кислороду, чем железо.

Наиболее распространенными раскислителями являются марганец и кремний,

используемые в виде ферросплавов, и алюминий.

Реакции раскисления можно представить следующим образом:

[O] + [Mn] = (MnO)

2[O] + [Si] = (SiO2)

3[O] + 2[Al] = (Al2O3)

В зависимости от условий ввода раскислителей в металл различают два

метода раскисления: глубинное (или осаждающее) и диффузионное раскисление.

При глубинном раскислении раскислители вводят в глубину металла. В этом

случае требуется определенное время для того, чтобы продукты раскисления -

оксиды кремния, марганца, алюминия всплыли в шлак. При диффузном раскилении

раскислители в тонко измельченном виде попадают в шлак, покрывающий металл.

Сначала в этом случае происходит раскисление шлака, а снижение содержания

кислорода в металле происходит за счет его перехода из металла в шлак, т.

е. [O] ==> (O). При диффузионном раскислении не происходит загрязнение

металла неметаллическими включениями - продуктами раскисления.

Для более глубокого раскисления применяют обработку жидкого металла в

вакууме или синтетическими шлаками.

В зависимости от степени раскисления различают спокойную, кипящую и

полуспокойную сталь.

Спокойная сталь - это сталь, полностью раскисленная, т. е. благодаря

вводу большого количества раскислителей весь кислород в стали находится в

связанном с элементом-раскислителем состоянии. При разливки такой стали

газы не выделяются, и она застывает спокойно.

Кипящая сталь - это сталь, частично раскисленная марганцем. При разливке

в слитки она бурлит (кипит) благодаря выделению пузырьков оксида углерода,

образующихся по реакции: [C] + [O] = {CO}.

Полуспокойная сталь - это сталь, по степени раскисленности занимающая

промежуточное место между кипящей и спокойной.

Полуспокойную сталь ракисляют частично в печи (марганцем) и затем в ковше

(кремнем, алюминием).

[pic]

Производство стали в конвертерах.

Кислородно-конвертерный процесс представляет собой один из видов передела

жидкого чугуна в сталь без затраты топлива путем продувки чугуна в

конвертере технически чистым кислородом, подаваемым через фурму, которая

вводится в металл сверху.

Впервые кислородно-конвертерный процесс в промышленном масштабе был

осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и

Донавице (за рубежом этот процесс получил название ЛД по первым буквам

городов, в нашей стране - кислородно-конвертерного).

В настоящее время работают конвертеры емкостью от 20 до 450 т,

продолжительность плавки в которых составляет 30 - 50 мин.

Процесс занимает главенствующую роль среди существующих способов

массового производства стали. Такой успех кислородно-конвертерного способа

заключается в возможности переработки чугуна практически любого состава,

использованием металлолома от 10 до 30 %, возможность выплавки широкого

сортамента сталей, включая легированные, высокой производительностью,

малыми затратами на строительство, большой гибкостью и качеством продукции.

Кислородно-конвертерный процесс с верхней продувкой.

Конвертер имеет грушевидную форму с концентрической горловиной. Это

обеспечивает лучшие условия для ввода в полость конвертера кислородной

фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих

материалов. Кожух конвертера выполняют сварным из стальных листов толщиной

от 20 до 100 мм. В центральной части конвертера крепят цапфы, соединяющиеся

с устройством для наклона. Механизм поворота конвертера состоит из системы

передач, связывающих цапфы с приводом. Конвертер может поворачиваться

вокруг горизонтально оси на 360о со скоростью от 0,01 до 2 об/мин. Для

больше грузных конвертеров емкостью от 200 т применяют двухсторонний

привод, например, четыре двигателя по два на каждую цапфу

[pic]

Рисунок 2 Конвертер емкостью 300 т с двухсторонним приводом механизма

поворота

В шлемной части конвертера имеется летка для выпуска стали. Выпуск стали

через летку исключает возможность попадания шлака в металл. Летка

закрывается огнеупорной глиной, замешанной на воде.

[pic]

Рисунок 3 Технологическая схема производства стали в кислородном конвертере

Ход процесса. Процесс производства стали в кислородном конвертере состоит

из следующих основных периодов (рис 3); загрузки металлолома, заливки

чугуна, продувки кислородом, загрузки шлакообразующих, слива стали и шлака.

Загрузка конвертера начинается с завалки стального лома. Лом загружают в

наклоненный конвертер через горловину при помощи завалочных машин лоткового

типа. Затем с помощью заливочных кранов заливают жидкий чугун, конвертер

устанавливают в вертикальное положение, вводят фурму и включают подачу

кислорода с чистотой не менее 99,5 % О2. Одновременно с началом продувки

загружают первую порцию шлакообразующих и железной руды (40 - 60 % от

общего количества). Остальную часть сыпучих материалов подают в конвертер в

процессе продувки одной или несколькими порциями, чаще всего 5 - 7 минут

после начала продувки.

На процесс рафинирования значительное влияние оказывают положение фурмы

(расстояние от конца фурмы до поверхности ванны) и давление подаваемого

кислорода. Обычно высота фурмы поддерживается в пределах 1,0 - 3,0 м,

давление кислорода 0,9 - 1,4 МПа. Правильно организованный режим продувки

обеспечивает хорошую циркуляцию металла и его перемешивание со шлаком.

Последнее в свою очередь способствует повышению скорости окисления

содержащихся в чугуне C, Si, Mn, P.

Важным в технологии кислородно-конвертерного процесса является

шлакообразование. Шлакообразование в значительной мере определяет ход

удаления фосфора, серы и других примесей, влияет на качество выплавляемой

стали, выход годного и качество футеровки. Основная цель этой стадии плавки

заключается в быстром формировании шлака с необходимыми свойствами

(основностью, жидкоподвижностью и т. д.). Сложность выполнения этой задачи

связана с высокой скоростью процесса (длительность продувки 14 - 24

минуты). Формирование шлака необходимой основности и заданными свойствами

зависит от скорости растворения извести в шлаке. На скорость растворения

извести в шлаке влияют такие факторы, как состав шлака, его окисленность,

условия смачивания шлаком поверхности извести, перемешивание ванны,

температурный режим, состав чугуна и т. д. Раннему формированию основного

шлака способствует наличие первичной реакционной зоны (поверхность

соприкосновения струи кислорода с металлом) с температурой до 2500о. В этой

зоне известь подвергается одновременному воздействию высокой температуры и

шлака с повышенным содержанием оксидов железа. Количество вводимой на

плавку извести определяется расчетом и зависит от состава чугуна и

содержания SiO2 руде, боксите, извести и др. Общий расход извести

составляет 5 - 8 % от массы плавки, расход боксита 0,5 - 2,0 %, плавикового

штампа 0,15 - 1,0 %. Основность конечного шлака должна быть не менее 2,5.

Окисление всех примесей чугуна начинается с самого начала продувки. При

этом наиболее интенсивно в начале продувки окисляется кремний и марганец.

Это объясняется высоким сродством этих элементов к кислороду при

сравнительно низких температурах (1450 - 1500о С и менее).

Окисление углерода в кислородно-конвертерном процессе имеет важное

значение, т. к. влияет на температурный режим плавки, процесс

шлакообразования и рафинирования металла от фосфора, серы, газов и

неметаллических включений.

Характерной особенностью кислородно-конвертерного производства является

неравномерность окисления углерода как по объему ванны, так и в течении

продувки.

С первых минут продувки одновременно с окислением углерода начинается

процесс дефосфорации - удаление фосфора. Наиболее интенсивное удаление

фосфора идет в первой половине продувки при сравнительно низкой температуры

металла, высоком содержании в шлаке (FeO); основность шлака и его

количество быстро увеличивается. Кислородно-конвертерный процесс позволяет

получить < 0,02 % Р в готовой стали.

Условия для удаления серы при кислородно-конвертерном процессе нельзя

считать таким же благоприятным, как для удаления фосфора. Причина

заключается в том, что шлак содержит значительное количество (FeO) и

высокая основность шлака (> 2,5) достигается лишь во второй половине

продувки. Степень десульфурации при кислородно-конвертерном процессе

находится в пределах 30 - 50 % и содержание серы в готовой стали составляет

0,02 - 0,04 %.

По достижении заданного содержания углерода дутые отключают, фурму

поднимают, конвертер наклоняют и металл через летку (для уменьшения

перемешивания металла и шлака) выливают в ковш.

Полученный металл содержит повышенное содержание кислорода, поэтому

заключительной операцией плавки является раскисление металла, которое

проводят в сталеразливном ковше. Для этой цели одновременно со сливом стали

по специальному поворотному желобу в ковш попадают раскислители и

легирующие добавки.

Шлак из конвертера сливают через горловину в шлаковый ковш, установленный

на шлаковозе под конвертером.

Течение кислородно-конвертерного процесса обусловливается температурным

режимом и регулируется изменением количества дутья и введением в конвертер

охладителей - металлолома, железной руды, известняка. Температура металла

при выпуске из конвертера около 1600о С.

Во время продувки чугуна в конвертере образуется значительное количество

отходящих газов. Для использование тепла отходящих газов и отчистки их от

пыли за каждым конвертером оборудованы котел-утилизатор и установка для

очистки газов.

Управление конвертерным процессом осуществляется с помощью современных

мощных компьютеров, в которые вводится информации об исходных материалах

(состав и количество чугуна, лома, извести), а также о показателях процесса

(количество и состав кислорода, отходящих газов, температура и т. п.).

Кислородно-конвертерный процесс с донной продувкой.

В середине 60-х годов опытами по вдуванию струи кислорода, окруженной

слоем углеводородов, была показана возможность через днище без разрушения

огнеупоров. В настоящее время в мире работают несколько десятков

конвертеров с донной продувкой садкой до 250 т. Каждая десятая тонна

конвертерной стали, выплавленной в мире, приходится на этот процесс.

Основное отличие конвертеров с донной продувкой от конвертеров с верхним

дутьем заключается в том, что они имеют меньший удельный объем, т. е. объем

приходящийся на тонну продуваемого чугуна. В днище устанавливают от 7 до 21

фурм в зависимости от емкости конвертера. Размещение фурм в днище может

быть различным. Обычно их располагают в одной половине днища так, чтобы при

наклоне конвертера они были выше уровня жидкого металла. Перед установкой

конвертера в вертикальное положение через фурмы пускается дутье.

В условиях донной продувки улучшаются условия перемешивания ванны,

увеличивается поверхность металл-зарождения и выделения пузырьков СО. Таким

образом, скорость обезуглероживания при донной продувке выше по сравнению

с верхней. Получение металла с содержанием углерода менее 0,05 % не

представляет затруднений.

Условия удаления серы при донной продувке более благоприятны, чем при

верхней. Это также связанно с меньшей окисленностью шлака и увеличением

поверхности контакта газ - металл. Последнее обстоятельство способствует

удалению части серы в газовую фазу в виде SO2.

Преимущества процесса с донной продувкой состоят в повышении выхода

годного металла на 1 - 2 %, сокращении длительности продувки, ускорении

плавления лома, меньшей высоте здания цеха и т. д. Это представляет

определенный интерес, прежде всего, для возможной замены мартеновских печей

без коренной реконструкции зданий мартеновских цехов.

Конвертерный процесс с комбинированной продувкой.

Тщательный анализ преимуществ и недостатков способов выплавки стали в

конвертерах с верхней и нижней продувкой привел к созданию процесса, в

котором металл продувается сверху кислородом и снизу - кислородом в

защитной рубашке или аргоном (азотом). Использование конвертера с

комбинированной продувкой по сравнению с продувкой только сверху позволяет

повысить выход металла, увеличить долю лома, снизить расход ферросплавов,

уменьшить расход кислорода, повысить качество стали за счет снижения

содержания газов при продувке инертным газом в конце операции.

[pic]

Производство стали в мартеновских печах

Сущность мартеновского процесса состоит в переработке чугуна и

металлического лома на паду отражательной печи. В мартеновском процессе в

отличие от конвертерного не достаточно тепла химических реакций и

физического тепла шихтовых материалов. Для плавление твердых шихтовых

материалов, для покрытия значительных тепловых потерь и нагрева стали до

необходимых температур в печь подводиться дополнительное тепло, получаемое

путем сжигания в рабочем пространстве топлива в струе воздуха, нагретого до

высоких температур.

Для обеспечение максимального использования подаваемого в печь топлива

необходимо, чтобы процесс горения топлива заканчивался полностью в рабочем

пространстве. В связи с этим в печь воздух подается в количестве,

превышающем теоретически необходимое. Это создает в атмосфере печи избыток

кислорода. Здесь также присутствует кислород, образующийся в результате

разложения при высоких температурах углекислого газа и воды.

Таким образом, газовая атмосфера печи имеет окислительный характер, т. е.

в ней содержится избыточное количество кислорода. Благодаря этому металл в

мартеновской печи в течение всей плавки подвергается прямому или косвенному

воздействию окислительной атмосферы.

Для интенсификации горения топлива в рабочем пространстве часть воздуха

идущего на горение, может заменяться кислородом. Газообразный кислород

может также подаваться непосредственно в ванну (аналогично продувке металла

в конвертере).

В результате этого во время плавки происходит окисление железа и других

элементов, содержащихся в шихте. Образующиеся при этом оксиды металлов FeO,

Fe2O3, MnO, CaO, P2O5, SiO2 и др. Вместе с частицами постепенно разрушаемой

футеровки, примесями, вносимыми шихтой, образуют шлак. Шлак легче металла,

поэтому он покрывает металл во все периоды плавки.

Шихтовые материалы основного мартеновского процесса состоят, как и при

других сталеплавильных процессах, из металлической части (чугун,

металлический лом, раскислители, легирующие) и неметаллической части

(железная руда, мартеновский агломерат, известняк, известь, боксит).

Чугун может применятся в жидком виде или в чушках. Соотношение количества

чугуна и стального лома в шихте может быть различным в зависимости от

процесса, выплавляемых марок стали и экономических условий. [pic]

Рисунок 4

По характеру шихтовых материалов основной мартеновский процесс делиться

на несколько разновидностей, наибольшее распространение из которых получили

скрап-рудный и скрап-процессы.

При скрап-рудном процессе основную массу металлической шихты (от 55 до 75

%) составляет жидкий чугун. Этот процесс широко применяется на заводах с

полным металлургическим циклом.

При скрап-процессе основную массу металлической массы шихты (от 55 до 75

%) составляет металлический лом. Чугун (25 - 45 %), как правило,

применяется в твердом виде. Таким процессом работают заводы, на которых нет

доменного производства.

[pic]

Рисунок 5 Схема двухванной сталеплавильной печи:

1 – топливно-кислородные фурмы;

2 – фурмы для вдувания твердых материалов; 3 – свод печи; 4 –

вертикальные каналы;

5 – шлаковики; 6 – подины печей

[pic]

Производство стали в электропечах

Электросталеплавильное производство - это получение качественных и

высококачественных сталей в электрических печах, обладающих существенными

преимуществами по сравнению с другими сталеплавильными агрегатами.

Выплавка стали в электропечах основана на использовании электроэнергии

для нагрева металла. Тепло в электропечах выделяется в результате

преобразовании электроэнергии в тепловую при горении электрической дуги

либо в специальных нагревательных элементах, либо за счет возбуждения

вихревых токов.

В отличие от конвертерного и мартеновского процессов выделение тепла в

электропечах не связанно с потреблением окислителя. Поэтому электроплавку

можно вести в любой среде - окислительной, восстановительной, нейтральной и

в широком диапазоне давлений - в условиях вакуума, атмосферного или

избыточного давления. Электросталь, предназначенную для дальнейшего

передела, выплавляют, главным образом в дуговых печах с основной футеровкой

и в индукционных печах.

[pic]

Рисунок 6 Схема рабочего пространства дуговой электропечи:

1 – куполообразный свод; 2 – стенки; 3 – желоб;

4 – сталевыпускное отверстие; 5 – электрическая дуга; 6 –

сферический под; 7 – рабочее окно; 8 – заслонка; 9 – электроды

Дуговые печи бывают различной емкости (до 250 т) и с трансформаторами

мощностью до 125 тысяч киловатт.

Источником тепла в дуговой печи является электрическая дуга, возникающая

между электродами и жидким металлом или шихтой при приложении к электродам

электрического тока необходимой силы. Дуга представляет собой поток

электронов, ионизированных газов и паров металла и шлака. Температура

электрической дуги превышает 3000о С. Дуга, как известно, может возникать

при постоянном и постоянном токе. Дуговые печи работают на переменном токе.

При горении дуги между электродом и металлической шихтой в первый период

плавки, когда катодом является электрод, дуга горит, т. к. пространство

между электродом и шихтой ионизируется за счет испускания электронов с

нагретого конца электрода. При перемене полярности, когда катодом

становится шихта - металл, дуга гаснет, т. к. в начале плавки металл еще не

нагрет и его температура недостаточна для эмиссии электронов. При

последующей перемене полярности дуга вновь возникает, поэтому в начальный

период плавки дуга горит прерывисто, неспокойно.

1 – электрод

2 – головка электродержателя

3 – свод

4 – подвеска свода

5 – сводное кольцо

6 – цилиндричекий кожух

7 – рабочая площадка

8 – механизм наклона печи

9 – желоб для слива сталей

[pic]

Рисунок 7 Дуговая сталеплавиль-ная печь.

После расплавлении шихты, когда ванна покрывает ровным слоем шлака, дуга

стабилизируется и горит ровно.

Выплавка стали в кислых электродуговых печах

Электродуговые печи с кислой футеровкой обычно используются при выплавке

стали для фасонного литья. Емкость их составляет от 0,5 до 6,0-10 т. Кислая

футеровка более термостойкая и позволяет эксплуатировать печь с учетом

условий прерывной работы многих литейных цехов машиностроительных заводов.

Основным недостатком печей с кислой футеровкой является то, что во время

плавки из металла не удаляются сера и фосфор. Отсюда, очень высокие

требования к качеству применяемой шихты по содержанию этих примесей.

Плавление в кислой печи длится примерно так же, как в основной печи (50-

70 мин). В окислительный период удалятся меньшее количество углерода (0,1 -

0,2 %) и из-за повышенного содержания FeO в шлаке металл кипит без присадок

железной руды. Содержание SiO2 в шлаке к концу окислительного периода

повышается до 55 - 65 %. Когда металл нагрет, начинается восстановление

кремния по реакции:

(SiO2) + 2[C] = [Si] + 2COгаз

К концу окислительного процесса содержание Si в металле увеличивается до

0,2 - 0,4 %. Раскисление стали перед выпуском может проводиться как в печи,

так и в конце.

Способы интенсификации выплавки стали в большегрузных печах.

Одношлаковый процесс. Технология выплавки стали под одним шлаком без

восстановительного периода применяется для выплавки мартеновского

сортамента сталей. После окончания проведения окислите1льного периода

присаживают силикомарганец и феррохром в необходимом количестве для

получения требуемого химического состава данной марки стали, улучшают шлак

добавкой извести, флюсов. Затем сталь выпускают в ковш, где проводят

окончательное раскисление и легирование.

[pic]

Рисунок 8 Технологическая схема производства стали в дуговой

сталеплавильной печи

Плавка с рафинированием в ковше печным шлаком.

Применяется на печах емкостью 100 - 200 т. После окончания окислительного

периода и раскисления металла наводят новый шлак с высоким содержанием СаО.

В течение 40 - 60 мин шлак раскисляют молотым коксом и ферросилицием. Перед

выпуском в шлак дают CaF2. Высокое (10 - 20 %) содержание CaF2 обеспечивает

высокую рафинирующую способность шлака. При выпуске из печи вначале

выпускают в ковш жидкий шлак и затем мощной струей металл. Перемешивание

металла со шлаком обеспечивает высокую степень рафинирования от примесей

(от серы) и неметаллических включений. Одной из форм рафинирования стали в

ковше можно считать технологию синтетических шлаков на основе СаО - Al2O3.

В этом случае требуются дополнительные затраты для плавления шлака.

Плавка стали в индукционной печи.

В индукционных печах для выплавки металла используется тепло, которое

выделяется в металле за счет возбуждения в нем электрического тока

переменным магнитным полем. Источником магнитного поля в индукционной печи

служит индуктор. Проводящая электрический ток шихта, помещенная в тигель

печи, подвергается воздействию переменного магнитного поля, возникающего от



курсовые работы





Рекомендуем



курсовые работы

ОБЪЯВЛЕНИЯ


курсовые работы

© «Библиотека»